Rabu, 10 November 2010

www.izzifekratsays.blogspot.comElektrokimia dan Laju Reaksi
1. Orbital s,p,d,f
- Orbital s,p
- Orbital d
- Orbital f
2. Manfaat katalis di dunia industri dan contoh

- Katalis Padat Untuk Oksidasi Langsung Metana Menjadi Metanol

Potensi metanol sebagai bahan bakar alternatif ternyata masih terkendala oleh proses produksinya yang cukup panjang, sekaligus masih tergantung dari kecukupan suplai gas alam. Prosesnya melibatkan pembentukan gas sintesa (CO dan H2) dari gas alam, sebelum menjadi metanol.
Adalah para peneliti Jerman dari Max Plank Institute of Coal Research di Mülheim (dipimpin oleh Ferdi Schüth) dan Max Planck Institute for Colloids and Interfaces di Potsdam-Golm (dipimpin oleh Markus Antonietti) kini tengah mengembangkan katalis padat untuk reaksi oksidasi langsung metana menjadi metanol pada temperatur rendah (direct low-temperature oxidation of methane to methanol).
Para peneliti tersebut kini tengah mengembangkan katalis padat yang memiliki aktifitas dan selektifitas yang tinggi, sekaligus memiliki tingkat kestabilan yang tinggi terhadap serangkaian proses recycle. Penelitian ini memberikan harapan akan kemungkinan implementasinya ditingkat produksi komersial.
Tim peneliti tersebut menggunakan polimer aromatik (nitril aromatik) dan platina (Pt) untuk menghasilkan katalis dengan akifitas yang tinggi, mudah dipisahkan dan dapat direcycle.
Katalis tersebut merupakan penyempurnaan dari katalis senyawa komplek platina, yang sebelumnya digunakan oleh tim peneliti yang dipimpin oleh Roy Periana. Tim tersebut telah berhasil menyintesa metyl sulfate, dari oksidasi metana pada temperatur 200degC, di dalam larutan H2SO4 pekat. Metyl sulfate selanjutnya dapat diubah menjadi metanol, dengan tingkat perolehan (yield) dan selektifitas yang tinggi. Namun, katalis komplek platina tersebut ternyata sulit untuk dipisahkan dan direcyle, sehingga menjadi kendala untuk diterapkan pada tingkat produksi komersial.
- Memakan Limbah
katalis yang bekerja seperti enzim, katalis tersebut dinamakan tetra-amido-macrocyclic ligand activators (TAML).TAML yang bekerja bersama hidrogen peroksida (H2O2) mampu meniru kerja enzim tubuh manusia untuk mengurai toksin yang berbahaya seperti pestisida, pewarna tekstil, dan detergen. TAML juga mampu menurunkan tingkat polusi bau, menjernihkan air, hingga bersifat disinfektan dengan membunuh bakteri setingkat anthrax.Saat TAML larut dalam air, hydrogen peroksida mengaktifkan TAML dengan menggantikan ligan H2O dengan H2O2 pada gugus TAML. Kemudian, H2O2 yang tidak stabil terurai kembali menjadi H2O menyisakan atom oksigen. Oksigen ini saling tolak menolak dengan atom besi (Fe) yang terdapat pada pusat gugus TAML. Interaksi inilah yang membuat TAML aktif dan mampu bekerja sebagaimana enzim ataupun scavenger radikal bebas yang dalam hal ini polutan.
- Pengilangan minyak bumi
atalis yang banyak dipergunakan adalah katalis reforming, isomerasi dan hydrocracking. Fungsi katalis-katalis tersebut pada dasarnya untuk membantu memecah rantai senyawa karbon. Dengan bantuan katalis tersebut minyak mentah (crude oil) dapat diproses sehingga dapat diperoleh variasi turunannya seperti premium, kerosin, avtur, dan produk lainnya tergantung tingkat pemutusan rantai karbonnya.
- proses produksi bahan kimia umum atau kimia khusus.
kebanyakan katalis yang digunakan adalah katalis yang membantu pembentukan (syntetic catalysts) seperti katalis hidrogenasi, katalis oksidasi, dll. Beberapa katalis yang sering dipakai dalam produksi bahan kimia antara lain: Vynil acetate monomer (VAM), purified terepthalic Acid (PTA) dan proses hidrogenisasi.
- endestruksi senyawa yang menghasilkan bau sehingga berfungsi sebagai deodorant.
- memecah rantai senyawa organic volatile (VOC) sehingga dapat digunakan untuk destruksi senyawa berbahaya tersebut.
- reduksi alkilasi, hidrogenasi karbonil dan hidrogenasi selektif senyawa nitro tanpa dehalogenasi.
Contoh : platinum
3. Faktor yang mempengaruhi laju reaksi
Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:
Luas permukaan sentuh
Luas permukaan sentuh memiliki peranan yang sangat penting dalam banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi ; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.
Suhu
Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.
Katalis
Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
Katalis dapat dibedakan ke dalam dua golongan utama: katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.
Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantarakimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:
A + C → AC (1)
B + AC → AB + C (2)

Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :
A + B + C → AB + C

Beberapa katalis yang pernah dikembangkan antara lain berupa katalis Ziegler-Natta yang digunakan untuk produksi masal polietilen dan polipropilen. Reaksi katalitis yang paling dikenal adalah proses Haber, yaitu sintesis amoniak menggunakan besi biasa sebagai katalis. Konverter katalitik yang dapat menghancurkan produk emisi kendaraan yang paling sulit diatasi, terbuat dari platina dan rodium.
Molaritas
Molaritas adalah banyaknya mol zat terlarut tiap satuan volum zat pelarut. Hubungannya dengan laju reaksi adalah bahwa semakin besar molaritas suatu zat, maka semakin cepat suatu reaksi berlangsung. Dengan demikian pada molaritas yang rendah suatu reaksi akan berjalan lebih lambat daripada molaritas yang tinggi. Hubungan antara laju reaksi dengan molaritas adalah:
V = k [A]m [B]n
dengan:
  • V = Laju reaksi
  • k = Konstanta kecepatan reaksi
  • m = Orde reaksi zat A
  • n = Orde reaksi zat B
Konsentrasi
Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasi maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia dengan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.
4. Gambar reaksi eksoterm dan endoterm
a. Reaksi Eksoterm
Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas.
Pada reaksi eksoterm harga ∆H = ( - )

Contoh : C(s) + O2(g) ---> CO2(g) + 393.5 kJ ; ∆H = -393.5 kJ
http://4.bp.blogspot.com/_f4CIymsvRjY/TIRKmm9LBVI/AAAAAAAAAVc/olU6C5YXEFY/s320/Untitled-3.jpg
b. Reaksi Endoterm
Pada reaksi endoterm terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas.
Pada reaksi endoterm harga ∆H = ( + )

Contoh : CaCO3(s) ----> CaO(s) + CO2(g) - 178.5 kJ ; ∆H = +178.5 kJ
Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
http://2.bp.blogspot.com/_f4CIymsvRjY/TIRKiyQ4AwI/AAAAAAAAAVU/uqFzU6ouZkE/s320/Untitled-2.jpg

Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a.
Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2 ---> 2H - a kJ ; ∆H= +akJ
b.
Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H ----> H2 + a kJ ; DH = -a kJ

Minggu, 07 November 2010

yg baruuuuuuuuuuu

Batuan-batuan di bumi (Jenis dan terbentuknya)

siklus.jpg Bagian luar bumi tertutupi oleh daratan dan lautan dimana bagian dari lautan lebih besar daripada bagian daratan. Akan tetapi karena daratan adalah bagian dari kulit bumi yang dapat kita amati langsung dengan dekat maka banyak hal-hal yang dapat pula kita ketahui dengan cepat dan jelas. Salah satu diantaranya adalah kenyataan bahwa daratan tersusun oleh beberapa jenis batuan yang berbeda satu sama lain. Dari jenisnya batuan-batuan tersebut dapat digolongkan menjadi 3 jenis golongan. Mereka adalah : batuan beku (igneous rocks), batuan sediment (sedimentary rocks), dan batuan metamorfosa/malihan (metamorphic rocks). Batuan-batuan tersebut berbeda-beda materi penyusunnya dan berbeda pula proses terbentuknya.
Batuan beku atau sering disebut igneous rocks adalah batuan yang terbentuk dari satu atau beberapa mineral dan terbentuk akibat pembekuan dari magma. Berdasarkan teksturnya batuan beku ini bisa dibedakan lagi menjadi batuan beku plutonik dan vulkanik. Perbedaan antara keduanya bisa dilihat dari besar mineral penyusun batuannya. Batuan beku plutonik umumnya terbentuk dari pembekuan magma yang relatif lebih lambat sehingga mineral-mineral penyusunnya relatif besar. Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah). Sedangkan batuan beku vulkanik umumnya terbentuk dari pembekuan magma yang sangat cepat (misalnya akibat letusan gunung api) sehingga mineral penyusunnya lebih kecil. Contohnya adalah basalt, andesit (yang sering dijadikan pondasi rumah), dan dacite 
lilgabbro8.jpglilgranite3.jpgbasalt2.jpglildacite5.jpg
Batuan sediment atau sering disebut sedimentary rocks adalah batuan yang terbentuk akibat proses pembatuan atau lithifikasi dari hasil proses pelapukan dan erosi yang kemudian tertransportasi dan seterusnya terendapkan. Batuan sediment ini bias digolongkan lagi menjadi beberapa bagian diantaranya batuan sediment klastik, batuan sediment kimia, dan batuan sediment organik. Batuan sediment klastik terbentuk melalui proses pengendapan dari material-material yang mengalami proses transportasi. Besar butir dari batuan sediment klastik bervariasi dari mulai ukuran lempung sampai ukuran bongkah. Biasanya batuan tersebut menjadi batuan penyimpan hidrokarbon (reservoir rocks) atau bisa juga menjadi batuan induk sebagai penghasil hidrokarbon (source rocks). Contohnya batu konglomerat, batu pasir dan batu lempung. Batuan sediment kimia terbentuk melalui proses presipitasi dari larutan. Biasanya batuan tersebut menjadi batuan pelindung (seal rocks) hidrokarbon dari migrasi. Contohnya anhidrit dan batu garam (salt). Batuan sediment organik terbentuk dari gabungan sisa-sisa makhluk hidup. Batuan ini biasanya menjadi batuan induk (source) atau batuan penyimpan (reservoir). Contohnya adalah batugamping terumbu.
lilconglomerate2.jpglilhalite5.jpglilredsandstone7.jpg

Batuan metamorf atau batuan malihan adalah batuan yang terbentuk akibat proses perubahan temperature dan/atau tekanan dari batuan yang telah ada sebelumnya. Akibat bertambahnya temperature dan/atau tekanan, batuan sebelumnya akan berubah tektur dan strukturnya sehingga membentuk batuan baru dengan tekstur dan struktur yang baru pula. Contoh batuan tersebut adalah batu sabak atau slate yang merupakan perubahan batu lempung. Batu marmer yang merupakan perubahan dari batu gamping. Batu kuarsit yang merupakan perubahan dari batu pasir.Apabila semua batuan-batuan yang sebelumnya terpanaskan dan meleleh maka akan membentuk magma yang kemudian mengalami proses pendinginan kembali dan menjadi batuan-batuan baru lagi.
lilslate3.jpglilwhitemarble2.jpg

Proses-proses tersebut berlangsung sepanjang waktu baik di masa lampau maupun masa yang akan datang. Kejadian alam dan proses geologi yang berlangsung sekarang inilah yang memberikan gambaran apa yang telah terjadi di masa lampau seperti diungkapkan oleh ahli geologi “JAMES HUTTON” dengan teorinya “THE PRESENT IS THE KEY TO THE PAST”

fikri ilham punya


DASAR-DASAR MINERALOGI

Kimia Mineral
Komposisi kimia suatu mineral merupakan hal yang sangat mendasar, karena beberapa sifat-sifat mineral/kristal tergantung kepadanya. Sifat-sifat mineral/ kristal tidak hanya tergantung kepada komposisi tetapi juga kepada susunan meruang dari atom-atom penyusun dan ikatan antar atom-atom penyusun kristal/mineral.
Daya yang mengikat atom (atau ion, atau grup ion) dari zat pada kristalin adalah bersifat listrik di alam. Tipe dan intensitasnya sangat berkaitan dengan sifat-sifat fisik dan kimia dari mineral. Kekerasan, belahan, daya lebur, kelistrikan dan konduktivitas termal, dan koefisien ekspansi termal berhubungan secara langsung terhadap daya ikat.
Kimia mineral merupakan suatu ilmu yang dimunculkan pada awal abad ke-19, setelah dikemukakannya "hukum komposisi tetap" oleh Proust pada tahun 1799, teori atom Dalton pada tahun 1805, dan pengembangan metode analisis kimia kuantitatif yang akurat. Karena ilmu kimia mineral didasarkan pada pengetahuan tentang komposisi mineral, kemungkinan dan keterbatasan analisis kimia mineral harus diketaui dengan baik.
Prinsip-prinsip kimia yang berhubungan dengan kimia mineral
Hukum komposisi tetap (The Law of Constant Composition) oleh Proust (1799):
Perbandingan massa unsur-unsur dalam tiap senyawa adalah tetap"
Teori atom Dalton (1805) :
Setiap unsur tersusun oleh partikel yang sangat kecil dan berbentuk seperti bola yang disebut atom.
Atom dari unsur yang sama bersifat sama sedangkan dari unsur yang berbeda bersifat berbeda pula.
Atom dapat berikatan secara kimiawi menjadi molekul.

Sifat Fisik Mineral
Penentuan nama mineral dapat dilakukan dengan membandingkan sifat-sifat fisik mineral antara mineral yang satu dengan mineral yang lainnya. Sifat-sifat fisik mineral tersebut meliputi: warna, kilap (luster), kekerasan (hardness), gores (streak), belahan (cleavage), pecahan (fracture), struktur/bentuk kristal, berat jenis, sifat dalam (tenacity), dan kemagnetan.


Bentuk Kristal
Pada wujudnya sebuah kristal itu seluruhnya telah dapat ditentukan secara ilmu ukur, dengan mengetahui susut-sudut bidangnya. Hingga saat ini baru terdapat 7 macam sistem kristal. Dasar penggolongan sistem kristal tersebut ada tiga hal, yaitu:
jumlah sumbu kristal,
letak sumbu kristal yang satu dengan yang lain
parameter yang digunakan untuk masing-masing sumbu kristal
Adapun ke tujuh sistem kristal tersebut adalah:
Sistem isometrik; Sistem ini juga disebut sistem reguler, bahkan sering dikenal sebagai sistem kubus/kubik. Jumlah sumbu kristalnya 3 dan saling tegak lurus satu dengan yang lainnya. Masing-masing sumbu sama panjangnya.
Sistem tetragonal; Sama dengan sistem isometrik, sistem ini mempunyai 3 sumbu kristal yang masing-masing saling tegak lurus. Sumbu a dan b mempunyai satuan panjang yang sama. Sedangkan sumbu c berlainan, dapat lebih panjang atau lebih pendek (umumnya lebih panjang).
Sistem rombis; Sistem ini disebut juga orthorombis dan mempunyai 3 sumbu kristal yang saling tegak lurus satu dengan yang lain. Ketiga sumbu kristal tersebut mempunyai panjang yang berbeda.
Sistem heksagonal; Sistem ini mempunyai empat sumbu kristal, dimana sumbu c tegak lurus terhadap ketiga sumbu yang lain. Sumbu a, b, dan d masing-masing saling membentuk sudut 120o satu terhadap yang lain. Sumbu a, b, dan d mempunyai panjang yang sama. Sedangkan panjang c berbeda, dapat lebih panjang atau lebih pendek (umumnya lebih panjang).
Sistem trigonal; Beberapa ahli memasukkan sistem ini ke dalam sistem heksagonal. Demikian pula cara penggambarannya juga sama. Perbedaannya bila pada trigonal setelah terbentuk bidang dasar, yang berbentuk segienam kemudian dibuat segitiga degnan menghubungkan dua titik sudut yang melewati satu titik sudutnya.

Sistem monoklin; Monoklin artinya hanya mempunyai satu sumbu yang miring dari tiga sumbu yang dimilikinya. Sumbu a tegak lurus terhadap sumbu b; b tegak lurus terhadap c, tetapi sumbu c tidak tegak lurus terhadap sumbu a. Ketiga sumbu tersebut mempunyai panjang yang tidak sama, umumnya sumbu c yangpaling panjang dan sumbu b yang paling pendek.

Warna
Adalah kesan mineral jika terkena cahaya. Warna mineral dap at dibedakan menjadi dua, yaitu idiokromatik, bila warna mineral selalu tetap, umumnya dijumpai pada mineral-mineral yang tidak tembus cahaya (opak), seperti galena, magnetit, pirit; dan alokromatik, bila warna mineral tidak tetap, tergantung dari material pengotornya. Umumnya terdapat pada mineral-mineral yang tembus cahaya, seperti kuarsa, kalsit.

Kilap
Adalah kesan mineral akibat pantulan cahaya yang dikenakan padanya. Kilap dibedakan menjadi dua, yaitu kilap logam dan kilap bukanlogam. Kilap logam memberikan kesan seperti logam bila terkena cahaya. Kilap ini biasanya dijumpai pada mineral-mineral yang mengandung logam atau mineral bijih, seperti emas, galena, pirit, kalkopirit. Kilap bukan-logam tidak memberikan kesan seperti logam jika terkena cahaya. Kilap jenis ini dapat dibedakan menjadi :
Kilap kaca (vitreous luster)

memberikan kesan seperti kaca bila terkena cahaya, misalnya: kalsit, kuarsa, halit.
Kilap intan (adamantine luster)
memberikan kesan cemerlang seperti intan, contohnya intan
Kilap sutera (silky luster)
memberikan kesan seperti sutera, umumnya terdapat pada mineral yang mempunyai struktur serat, seperti asbes, aktinolit, gipsum
Kilap damar (resinous luster)
memberikan kesan seperti damar, contohnya: sfalerit dan resin
Kilap mutiara (pearly luster)
memberikan kesan seperti mutiara atau seperti bagian dalam dari kulit kerang, misalnya talk, dolomit, muskovit, dan tremolit.
Kilap lemak (greasy luster)
menyerupai lemak atau sabun, contonya talk, serpentin
Kilap tanah (earthy) atau kirap guram (dull)
kenampakannya buram seperti tanah, misalnya: kaolin, limonit, bentonit.

Kekerasan
Adalah ketahanan mineral terhadap suatu goresan. Secara relatif sifat fisik ini ditentukan dengan menggunakan skala Mohs (1773 – 1839), yang dimulai dari skala 1 yang paling lunak hingga skala 10 untuk mineral yang paling keras. Skala Mohs tersebut meliputi (1) talk, (2) gipsum, (3) kalsit, (4) fluorit, (5) apatit, (6) feldspar, (7) kuarsa, (8) topaz, (9) korundum, dan (10) intan.
Masing-masing mineral tersebut diatas dapat menggores mineral lain yang bernomor lebih kecil dan dapat digores oleh mineral lain yang bernonor lebih besar. Dengan lain perkataan SKALA MOHS adalah Skala relative. Dari segi kekerasan mutlak skala ini masih dapat dipakai sampai yang ke 9, artinya no. 9 kira-kira 9 kali sekeras no. 1, tetapi bagi no. 10 adalah 42 kali sekeras no. 1
Untuk pengukuran kekerasan ini, dapat digunakan alat sederhana seperti kku tangan, pisau baja dan lain-lain, seperti terlihat pada tabel berikut : Tabel 3.1. Alat Penguji Kekerasan
Alat penguji Derajat Kekerasan Mohs
Kuku manusia 2,5
Kawat tembaga 3